Jason Karpac, PhD
Associate Professor
Contact
Cell Biology and Genetics
4342 Medical Research Education Building II
Bryan,
TX
77807
karpac@tamu.edu
Phone: 979.436.0767
Fax: 979.436.9293
The Karpac Lab
Education and Training
- Grove City College, BS, 2003
- Oklahoma Health Sciences Center (OMRF), PhD, 2007
- University of Rochester, Postdoctoral
- Buck Institute for Research on Aging, Postdoctoral
Research Interests
- The Karpac Lab is broadly interested in the origins of signaling networks that provide animals with metabolic flexibility, and thus the capacity to balance energy homeostasis. These ancient networks, under intense evolutionary pressure, both respond to and are shaped by diverse inputs, such as nutrient availability, pathogens, and aging. We primarily use the fruit fly Drosophila melanogaster as a genetic model to investigate the function and integration of these signaling networks at multiple levels of biological organization: from molecules, to cells and tissues, to inter-organ communication, to organismal physiology and aging.
Representative Publications
- Weindel, CG., Martinez, ML., Zhao, X., Mabry, CJ., Bell, SL., Vail, KJ., Coleman, AK., VanPortfliet, J., Zhao, B., Wagner, AR., Azam, S., Scott, HM., Li, P., West, AP., Karpac, J., Patrick, KL., and Watson, RO. (2022). Mitochondrial ROS promotes susceptibility to infection via gasdermin D-mediated necroptosis. Cell. S0092-8674(22). PMID: 35907404
- Mlih, M. and Karpac, J. (2022). Integrin-ECM interactions and membrane-associated Catalase cooperate to promote resilience of the Drosophila intestinal epithelium. PLOS Biology. 20(5):e3001635. PMID: 35522719
- Zhao, X., and Karpac, J. (2021). Glutamate Metabolism Directs Energetic Trade-offs to Shape Host-Pathogen Susceptibility in Drosophila. Cell Metabolism. 33(12):2428-2444: PMID: 34710355. *Previewed in Cell Metabolism - Defend or reproduce? Muscle-derived glutamate determines an immune-reproductive energetic tradeoff: PMID: 34879236
- Fuentes, N.R., Mlih, M., Wang, X., Webster, G., Cortes-Acosta, S., Salinas, M.L., Corbin, I.R., Karpac, J., and Chapkin, R.S. (2021). Membrane therapy using DHA suppresses epidermal growth factor receptor signaling by disrupting nanocluster formation. J Lipid Research. Jan 27;62:100026. PMID: 33515553
- Vandehoef, C., Molaei, M., and Karpac, J. (2020). Dietary Adaptation of Microbiota in Drosophila Requires NF-κB-Dependent Control of the Translational Regulator 4E-BP. Cell Reports. 31, 107736. PMID:32521261
- Zhao, X., Li, X., Shi, X., and Karpac, J. (2020). Diet‐MEF2 interactions shape lipid droplet diversification in muscle to influence Drosophila lifespan. Aging Cell. 19(7):e13172. PMID: 32537848
- Zhao, X., Karpac, J. (2020). REVIEW. The Drosophila midgut and the systemic coordination of lipid-dependent energy homeostasis. Current Opinion Insect Science, 41:100-105. PMID: 32898765
- Molaei, M., Vandehoef, C., and Karpac, J. (2019). NF-κB Shapes Metabolic Adaptation by Attenuating Foxo-Mediated Lipolysis in Drosophila. Developmental Cell. 49, 802-810.e6. PMID: 31080057
- Mlih, M., Khericha, M., Birdwell, C., West, AP., Karpac, J. (2018). A virus-acquired host cytokine controls systemic aging by antagonizing apoptosis. PLOS Biology, 16(7): e2005796. PMID: 30036358 *Previewed in Nature Research Highlights
- Fuentes, NR., Mlih, M., Barhoumi, R., Fan, YY., Hardin, P., Steele, TJ., Behmer, S., Prior, IA., Karpac, J., Chapkin, RS. (2018). Long chain n-3 fatty acids attenuate oncogenic KRas-driven proliferation by altering plasma membrane nanoscale proteolipid composition. Cancer Research, DOI: 10.1158/0008-5472. PMID: 29769200
- Zhao, X., Karpac, J. (2017). Muscle directs diurnal energy homeostasis through a myokine-dependent hormone module in Drosophila. Current Biology, 27(13): 1941-1955. PMID: 28669758. *Previewed and Recommended for F1000Prime
- Luis Miguel, N., Wang, L., Ortega, M., Deng, H., Katewa, SD., Wai-Lun Li, P., Karpac, J., Jasper, H., Kapahi, P. (2016). Intestinal IRE1 is required for increased triglyceride metabolism and longer lifespan under dietary restriction. Cell Reports, 17(5);1207-1216. PMID: 27783936
- Wang, L.*, Karpac, J.*, Jasper, H. (2014). Promoting longevity by maintaining metabolic and proliferative homeostasis. J Exp Biol., 217(Pt 1):109-18. *equal contribution.http://www.ncbi.nlm.nih.gov/pubmed/24353210
- Karpac, J.#, Biteau, B., Jasper, H. (2013). Misregulation of an adaptive metabolic response contributes to the age-related disruption of lipid homeostasis in Drosophila. Cell Reports, DOI:10.1016/ j.celrep.2013.08.004. #corresponding author.http://www.ncbi.nlm.nih.gov/pubmed/24035390
- Karpac, J., Jasper, H. (2013). Aging: Seeking mitonuclear balance. Cell, 154(2);271-273.http://www.ncbi.nlm.nih.gov/pubmed/23870118
- Kapuria, S., Karpac, J., Biteau, B., Hwangbo, DS., Jasper, H. (2012). Notch-mediated suppression of TSC2 expression regulates cell differentiation in the Drosophila intestinal stem cell lineage. PLoS Genetics, 8(11): e1003045.http://www.ncbi.nlm.nih.gov/pubmed/23144631
- Karpac, J., Younger, A., Jasper, H. (2011). Dynamic coordination of innate immune signaling and Insulin signaling regulates systemic responses to localized DNA damage. Developmental Cell, 20(6):841-54.http://www.ncbi.nlm.nih.gov/pubmed/21664581
- Karpac, J., Jasper, H. (2011). Metabolic Homeostasis: HDACs Take Center Stage. Cell, 145(4):497-9.http://www.ncbi.nlm.nih.gov/pubmed/21565608
- Biteau, B., Karpac, J., Hwangbo, D., and Jasper, H. (2010). Regulation of Drosophila lifespan by JNK signaling. Exp Gerontol, 46(5):349-54.http://www.ncbi.nlm.nih.gov/pubmed/21111799
- Biteau, B.*, Karpac, J.*, Supoyo, S., DeGennaro, M., Lehmann, R., and Jasper, H. (2010). Lifespan extension by preserving proliferative homeostasis in Drosophila. PLoS Genetics, 6(10): e1001159. *equal contribution. http://www.ncbi.nlm.nih.gov/pubmed/20976250
- Karpac, J., Hull-Thompson, J., Falleur, M., and Jasper, H. (2009). JNK signaling in insulin producing cells is required for adaptive responses to stress in Drosophila. Aging Cell, 8 288-295.http://www.ncbi.nlm.nih.gov/pubmed/19627268
- Karpac, J., and Jasper, H. (2009). Insulin and JNK: optimizing metabolic homeostasis and lifespan. Trends Endocrinol Metab, 20, 100-106.http://www.ncbi.nlm.nih.gov/pubmed/19251431
- Karpac, J., Kern, A., Kim, S., Brush, S., Bui, S., Hunnewell, P. & Hochgeschwender, U. (2008). Failure of adrenal corticosterone production in POMC-deficient mice results from lack of integrated effects of POMC peptides on multiple factors. Am J Physiol Endocrinol Metab, 295(2):E446-55.http://www.ncbi.nlm.nih.gov/pubmed/18559987
- Karpac, J., Kern, A. & Hochgeschwender, U. (2007). Pro-opiomelanocortin peptides and the adrenal gland. Mol Cell Endocrinol, 265-266:29-33.http://www.ncbi.nlm.nih.gov/pubmed/17222502
- Ostwald, D., Karpac, J. & Hochgeschwender, U. (2006). Effects on hippocampus of lifelong absence of glucocorticoids in the pro-opiomelanocortin null mutant mouse reveal complex relationship between glucocorticoids and hippocampal structure and function. J Mol Neurosci, 28, 291-302.http://www.ncbi.nlm.nih.gov/pubmed/16691017
- Karpac, J., Ostwald, D., Bui, S., Hunnewell, P., Shankar, M. & Hochgeschwender, U. (2005). Development, maintenance, and function of the adrenal gland in early post-natal pro- opiomelanocortin-null mutant mice. Endocrinology, 146, 2555-62. http://www.ncbi.nlm.nih.gov/pubmed/15731356